Vale a pena fazer o curso de machine learning do Coursera?

As plataformas de cursos online surgiram nos últimos anos para realizar o sonho de muita gente: poder assistir aulas formuladas pelas melhores universidades do mundo sem precisar sair de casa, enquanto come um Doritos e veste apenas uma cueca. Esse não era meu sonho, mas resolvi que deveria experimentar esse conteúdo pelo menos pela experiência.

Aprendizado de máquina é um assunto que me interessa, por isso resolvi me matricular neste curso gratuito do Coursera. Já havia estudado o assunto antes por conta própria através de livros e até usado um pouco da teoria na prática. Além de poder aprender mais algumas coisas e solidificar o que já tinha visto, essa foi a chance de conhecer e avaliar um conteúdo didático criado em Stanford. É o equivalente para um amante de café ter a chance de experimentar de graça aquele café que é considerado um dos melhores do mundo, feito com grãos retirados das fezes de um roedor que não lembro o nome.

Antes de saber se você deveria fazer este curso é uma boa ideia ter uma noção do que é aprendizado de máquina. E acho que a melhor forma de motivar alguém a conhecer melhor o assunto, é ter uma noção de suas aplicações práticas. Usando machine learning você pode criar software que reconhece objetos em imagens, detecta fraudes em operações financeiras, dirige um automóvel ou drone, avalia o crédito de pessoas, avalia a probabilidade de um paciente ter uma doença, prevê que um servidor pode sofrer uma falha, e muitas outras coisas que parecem mágica. Mas conhecendo melhor sobre o assunto você vai ver que essa lista que fiz é bem limitada.

Depois de se interessar pelo curso, sua preocupação pode ser em saber se você precisa ser um campeão de olimpíada de matemática para conseguir acompanhar o curso. Este é um assunto que usa muita matemática, mas o curso foi pensado para alunos que pelo menos consigam ler uma fórmula com somatórias, matriz e vetores. Existem até aulas opcionais com álgebra linear básica para ajudar com os conceitos que vão ser usados durante as aulas. E graças ao professor Andrew Ng, as aulas são muito didáticas a ponto de ele fazer todos os passos de cálculos necessários nos exemplos. Em casos em que seria necessário um conhecimento matemático maior, o professor dá uma explicação sobre a intuição do que está sendo feito, mas não é exigido que o aluno saiba resolver uma derivada ou decompor uma matriz, por exemplo. Mas minha opinião é que tendo uma base mais do que básica sobre cálculo e álgebra linear vai tornar o conteúdo muito mais fácil de assimilar e entender, sem deixar que alguns passos nos algoritmos pareçam ter aparecido por mágica.

Saber programar é um pré-requisito. Os projetos a entregar são programas escritos em Matlab ou Octave. Mas não é necessário conhecer uma dessas linguagens, pois algumas das aulas vão te ensinar o necessário para realizar todas as tarefas. Eu mesmo nunca havia usado essas linguagens. Apesar de não ser muito difícil de aprender, muitas vezes perdi muito tempo por detalhes da linguagem que causavam erros nas minhas tarefas. Mas o fato de que você só precisar programar o principal das tarefas, com o código que cuida de preparar os dados e mostrar resultados já pronto, facilitou e economizou muito meu tempo, considerando que é um curso que muita gente vai fazer no tempo livre. E o sistema de envio das tarefas com correção automática funciona muito bem. Você resolve cada passo do exercício, envia para o sistema e ele te diz se você acertou ou não.

Um ponto muito positivo é que todo o conteúdo, por ser ensinado pela mesma pessoa, tenta seguir mais ou menos a mesma notação do começo ao fim. Isso ajuda muito para comparar os algoritmos. Quando você tenta aprender cada uma dessas coisas por fontes diferentes, você acaba vendo notações diferentes que dependem da preferência do autor. É como tentar entender uma história que teve uma parte contada por uma pessoa e o final contada por outra, mas a que contou o final só se refere aos envolvidos por apelidos que você não conhecia.

O melhor do curso para mim são as ferramentas que ele ensina para que você entenda se sua solução de machine learning está funcionando bem, e o que você pode fazer para melhorá-la. É esse o conhecimento que eu esperaria de alguém que fosse usar esses algoritmos na prática.

Vejo poucos pontos negativos, que são pequenos perto das qualidades do curso. Algo que me incomoda um pouco são as questões que aparecem no meio dos videos. Muitas vezes eles nem estão testando se você entendeu a teoria que está sendo ensinada, mas verificando se você está acordado e prestou atenção na notação que o professor acabou de usar. Outra coisa que me fez falta, que se deve mais ao formato, é não ter um material que possa consultar facilmente depois. É impraticável procurar no meio dos videos algo que você não lembra direito onde viu, por isso recomendo anotar principalmente as dicas que são baseadas na experiência do professor Andrew.

Talvez algumas pessoas possam se sentir incomodadas pela falta de formalidade técnica que o assunto é tratado, mas considerando que aprendizado de máquina é uma área em que os métodos funcionam mesmo sem os matemáticos entenderem muito bem, acho que o conteúdo habilita alguém a se tornar um praticante. Um conhecimento mais formal seria necessário apenas para quem deseja se tornar um pesquisador na áreae nesse caso este curso funcione bem como uma introdução geral.

Por tudo isso digo que vale muito a pena fazer o curso de machine learning oferecido pela Universidade de Stanford pelo Coursera. Valeria a pena mesmo se fosse pago, sendo grátis eu tenho a vontade de visitar meus amigos programadores e obrigá-los a assistir essas aulas.

Deixe uma resposta

Preencha os seus dados abaixo ou clique em um ícone para log in:

Logotipo do WordPress.com

Você está comentando utilizando sua conta WordPress.com. Sair / Alterar )

Imagem do Twitter

Você está comentando utilizando sua conta Twitter. Sair / Alterar )

Foto do Facebook

Você está comentando utilizando sua conta Facebook. Sair / Alterar )

Foto do Google+

Você está comentando utilizando sua conta Google+. Sair / Alterar )

Conectando a %s